Inductive computations on graphs defined by clique-width expressions
نویسنده
چکیده
Labelling problems for graphs consist in building distributed data structures, making it possible to check a given graph property or to compute a given function, the arguments of which are vertices. For an inductively computable function D, if G is a graph with n vertices and of clique-width at most k, where k is fixed, we can associate with each vertex x of G a piece of information (bit sequence) lab(x) of length O(log(n)) such that we can compute D in constant time, using only the labels of its arguments. The preprocessing can be done in time O(h.n) where h is the height of the syntactic tree of G. We perform an inductive computation, without using the tools of monadic second order logic. This enables us to give an explicit labelling scheme and to avoid constants of exponential size. Mathematics Subject Classification. 68R10, 90C35.
منابع مشابه
On the Clique-Width of Perfect Graph Classes
Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique– width at most 3, and a 3–expression defining it can be obtained ...
متن کاملVertex Decomposable Simplicial Complexes Associated to Path Graphs
Introduction Vertex decomposability of a simplicial complex is a combinatorial topological concept which is related to the algebraic properties of the Stanley-Reisner ring of the simplicial complex. This notion was first defined by Provan and Billera in 1980 for k-decomposable pure complexes which is known as vertex decomposable when . Later Bjorner and Wachs extended this concept to non-pure ...
متن کاملNCE Graph Grammars and Clique-Width
Graph grammars are widely used in order to deene classes of graphs having some inductive and narrow structure. In many cases the narrowness can be measured in terms of the maximal tree-width and/or clique-width of the graphs in the class, (see RS86],,CO00] for deenitions of these notions). It is known that using the corresponding tree-decomposition or clique-width parse term, any property of th...
متن کاملGraph Operations Characterizing Rank-Width and Balanced Graph Expressions
Graph complexity measures like tree-width, clique-width, NLC-width and rank-width are important because they yield Fixed Parameter Tractable algorithms. Rank-width is based on ranks of adjacency matrices of graphs over GF(2). We propose here algebraic operations on graphs that characterize rank-width. For algorithmic purposes, it is important to represent graphs by balanced terms. We give a uni...
متن کاملMulti-Clique-Width
Multi-clique-width is obtained by a simple modification in the definition of cliquewidth. It has the advantage of providing a natural extension of tree-width. Unlike clique-width, it does not explode exponentially compared to tree-width. Efficient algorithms based on multi-clique-width are still possible for interesting tasks like computing the independent set polynomial or testing c-colorabili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ITA
دوره 43 شماره
صفحات -
تاریخ انتشار 2009